Найти НОД и НОК чисел 4000 и 5000

Дано: два числа 4000 и 5000.

Найти: НОД и НОК этих чисел.

Нахождение НОД 4000 и 5000

Наибольший общий делитель (НОД) целых чисел 4000 и 5000 — это наибольшее из их общих делителей, т.е наибольшее число, на которое оба делятся без остатка.

Как найти НОД 4000 и 5000:

  1. разложить 4000 и 5000 на простые множители;
  2. выбрать одинаковые множители, входящие в оба разложения;
  3. найти их произведение.

Отсюда:

1. Раскладываем 4000 и 5000 на простые множители:

5000 = 2 · 2 · 2 · 5 · 5 · 5 · 5;

5000 2
2500 2
1250 2
625 5
125 5
25 5
5 5
1

4000 = 2 · 2 · 2 · 2 · 2 · 5 · 5 · 5;

4000 2
2000 2
1000 2
500 2
250 2
125 5
25 5
5 5
1

2. Выбираем одинаковые множители. В нашем случае это: 2, 2, 2, 5, 5, 5

3. Перемножаем эти множители и получаем: 2 · 2 · 2 · 5 · 5 · 5 = 1000

Ответ: НОД (4000; 5000) = 2 · 2 · 2 · 5 · 5 · 5 = 1000.

Нахождение НОК 4000 и 5000

Наименьшее общее кратное (НОК) целых чисел 4000 и 5000 — это наименьшее натуральное число, которое делится на 4000 и на 5000 без остатка.

Как найти НОК 4000 и 5000:

  1. разложить 4000 и 5000 на простые множители;
  2. выбрать одну группу множителей;
  3. добавить к ним множители из второй группы, которые отсутствуют в выбранной;
  4. найти их произведение.

Отсюда:

1. Раскладываем 4000 и 5000 на простые множители:

4000 = 2 · 2 · 2 · 2 · 2 · 5 · 5 · 5;

4000 2
2000 2
1000 2
500 2
250 2
125 5
25 5
5 5
1

5000 = 2 · 2 · 2 · 5 · 5 · 5 · 5;

5000 2
2500 2
1250 2
625 5
125 5
25 5
5 5
1

2. Берем множители из первого разложения, добавляем к ним отсутствующие множители со второго разложения и вычисляем произведение.

Ответ: НОК (4000; 5000) = 2 · 2 · 2 · 2 · 2 · 5 · 5 · 5 · 5 = 20000

Калькулятор нахождения НОД и НОК

Введите 2 числа и получите подробное решение.

Смотрите также

Подписаться
Уведомить о
guest
0 комментариев
Межтекстовые Отзывы
Посмотреть все комментарии