Найти НОД и НОК чисел 400 и 2100390

Дано: два числа 400 и 2100390.

Найти: НОД и НОК этих чисел.

Нахождение НОД 400 и 2100390

Наибольший общий делитель (НОД) целых чисел 400 и 2100390 — это наибольшее из их общих делителей, т.е наибольшее число, на которое оба делятся без остатка.

Как найти НОД 400 и 2100390:

  1. разложить 400 и 2100390 на простые множители;
  2. выбрать одинаковые множители, входящие в оба разложения;
  3. найти их произведение.

Отсюда:

1. Раскладываем 400 и 2100390 на простые множители:

2100390 = 2 · 3 · 5 · 53 · 1321;

2100390 2
1050195 3
350065 5
70013 53
1321 1321
1

400 = 2 · 2 · 2 · 2 · 5 · 5;

400 2
200 2
100 2
50 2
25 5
5 5
1

2. Выбираем одинаковые множители. В нашем случае это: 2, 5

3. Перемножаем эти множители и получаем: 2 · 5 = 10

Ответ: НОД (400; 2100390) = 2 · 5 = 10.

Нахождение НОК 400 и 2100390

Наименьшее общее кратное (НОК) целых чисел 400 и 2100390 — это наименьшее натуральное число, которое делится на 400 и на 2100390 без остатка.

Как найти НОК 400 и 2100390:

  1. разложить 400 и 2100390 на простые множители;
  2. выбрать одну группу множителей;
  3. добавить к ним множители из второй группы, которые отсутствуют в выбранной;
  4. найти их произведение.

Отсюда:

1. Раскладываем 400 и 2100390 на простые множители:

400 = 2 · 2 · 2 · 2 · 5 · 5;

400 2
200 2
100 2
50 2
25 5
5 5
1

2100390 = 2 · 3 · 5 · 53 · 1321;

2100390 2
1050195 3
350065 5
70013 53
1321 1321
1

2. Берем множители из первого разложения, добавляем к ним отсутствующие множители со второго разложения и вычисляем произведение.

Ответ: НОК (400; 2100390) = 2 · 2 · 2 · 2 · 5 · 5 · 3 · 53 · 1321 = 84015600

Калькулятор нахождения НОД и НОК

Введите 2 числа и получите подробное решение.

Смотрите также

Подписаться
Уведомить о
guest
0 комментариев
Межтекстовые Отзывы
Посмотреть все комментарии