Дано: два числа 4 и 81.
Найти: НОД и НОК этих чисел.
Нахождение НОД 4 и 81
Наибольший общий делитель (НОД) целых чисел 4 и 81 — это наибольшее из их общих делителей, т.е наибольшее число, на которое оба делятся без остатка.
Как найти НОД 4 и 81:
- разложить 4 и 81 на простые множители;
- выбрать одинаковые множители, входящие в оба разложения;
- найти их произведение.
Отсюда:
1. Раскладываем 4 и 81 на простые множители:
81 = 3 · 3 · 3 · 3;
81 | 3 |
27 | 3 |
9 | 3 |
3 | 3 |
1 |
4 = 2 · 2;
4 | 2 |
2 | 2 |
1 |
Частный случай, т.к. 4 и 81 — взаимно простые числа
Нахождение НОК 4 и 81
Наименьшее общее кратное (НОК) целых чисел 4 и 81 — это наименьшее натуральное число, которое делится на 4 и на 81 без остатка.
Как найти НОК 4 и 81:
- разложить 4 и 81 на простые множители;
- выбрать одну группу множителей;
- добавить к ним множители из второй группы, которые отсутствуют в выбранной;
- найти их произведение.
Отсюда:
1. Раскладываем 4 и 81 на простые множители:
4 = 2 · 2;
4 | 2 |
2 | 2 |
1 |
81 = 3 · 3 · 3 · 3;
81 | 3 |
27 | 3 |
9 | 3 |
3 | 3 |
1 |
2. Берем множители из первого разложения, добавляем к ним отсутствующие множители со второго разложения и вычисляем произведение.
Ответ: НОК (4; 81) = 3 · 3 · 3 · 3 · 2 · 2 = 324