Найти: НОД и НОК этих чисел.
Нахождение НОД 368 и 40
Наибольший общий делитель (НОД) целых чисел 368 и 40 — это наибольшее из их общих делителей, т.е наибольшее число, на которое оба делятся без остатка.
Как найти НОД 368 и 40:
- разложить 368 и 40 на простые множители;
- выбрать одинаковые множители, входящие в оба разложения;
- найти их произведение.
Отсюда:
1. Раскладываем 368 и 40 на простые множители:
368 = 2 · 2 · 2 · 2 · 23;
368 | 2 |
184 | 2 |
92 | 2 |
46 | 2 |
23 | 23 |
1 |
40 = 2 · 2 · 2 · 5;
40 | 2 |
20 | 2 |
10 | 2 |
5 | 5 |
1 |
2. Выбираем одинаковые множители. В нашем случае это: 2, 2, 2
3. Перемножаем эти множители и получаем: 2 · 2 · 2 = 8
Нахождение НОК 368 и 40
Наименьшее общее кратное (НОК) целых чисел 368 и 40 — это наименьшее натуральное число, которое делится на 368 и на 40 без остатка.
Как найти НОК 368 и 40:
- разложить 368 и 40 на простые множители;
- выбрать одну группу множителей;
- добавить к ним множители из второй группы, которые отсутствуют в выбранной;
- найти их произведение.
Отсюда:
1. Раскладываем 368 и 40 на простые множители:
368 = 2 · 2 · 2 · 2 · 23;
368 | 2 |
184 | 2 |
92 | 2 |
46 | 2 |
23 | 23 |
1 |
40 = 2 · 2 · 2 · 5;
40 | 2 |
20 | 2 |
10 | 2 |
5 | 5 |
1 |
2. Берем множители из первого разложения, добавляем к ним отсутствующие множители со второго разложения и вычисляем произведение.