Найти: НОД и НОК этих чисел.
Нахождение НОД 360 и 369
Наибольший общий делитель (НОД) целых чисел 360 и 369 — это наибольшее из их общих делителей, т.е наибольшее число, на которое оба делятся без остатка.
Как найти НОД 360 и 369:
- разложить 360 и 369 на простые множители;
- выбрать одинаковые множители, входящие в оба разложения;
- найти их произведение.
Отсюда:
1. Раскладываем 360 и 369 на простые множители:
369 = 3 · 3 · 41;
369 | 3 |
123 | 3 |
41 | 41 |
1 |
360 = 2 · 2 · 2 · 3 · 3 · 5;
360 | 2 |
180 | 2 |
90 | 2 |
45 | 3 |
15 | 3 |
5 | 5 |
1 |
2. Выбираем одинаковые множители. В нашем случае это: 3, 3
3. Перемножаем эти множители и получаем: 3 · 3 = 9
Нахождение НОК 360 и 369
Наименьшее общее кратное (НОК) целых чисел 360 и 369 — это наименьшее натуральное число, которое делится на 360 и на 369 без остатка.
Как найти НОК 360 и 369:
- разложить 360 и 369 на простые множители;
- выбрать одну группу множителей;
- добавить к ним множители из второй группы, которые отсутствуют в выбранной;
- найти их произведение.
Отсюда:
1. Раскладываем 360 и 369 на простые множители:
360 = 2 · 2 · 2 · 3 · 3 · 5;
360 | 2 |
180 | 2 |
90 | 2 |
45 | 3 |
15 | 3 |
5 | 5 |
1 |
369 = 3 · 3 · 41;
369 | 3 |
123 | 3 |
41 | 41 |
1 |
2. Берем множители из первого разложения, добавляем к ним отсутствующие множители со второго разложения и вычисляем произведение.