Найти НОД и НОК чисел 36 и 125

Дано: два числа 36 и 125.

Найти: НОД и НОК этих чисел.

Нахождение НОД 36 и 125

Наибольший общий делитель (НОД) целых чисел 36 и 125 — это наибольшее из их общих делителей, т.е наибольшее число, на которое оба делятся без остатка.

Как найти НОД 36 и 125:

  1. разложить 36 и 125 на простые множители;
  2. выбрать одинаковые множители, входящие в оба разложения;
  3. найти их произведение.

Отсюда:

1. Раскладываем 36 и 125 на простые множители:

125 = 5 · 5 · 5;

125 5
25 5
5 5
1

36 = 2 · 2 · 3 · 3;

36 2
18 2
9 3
3 3
1

Частный случай, т.к. 36 и 125 — взаимно простые числа, т.е. числа которые имеют только один общий делитель — единицу.

Нахождение НОК 36 и 125

Наименьшее общее кратное (НОК) целых чисел 36 и 125 — это наименьшее натуральное число, которое делится на 36 и на 125 без остатка.

Как найти НОК 36 и 125:

  1. разложить 36 и 125 на простые множители;
  2. выбрать одну группу множителей;
  3. добавить к ним множители из второй группы, которые отсутствуют в выбранной;
  4. найти их произведение.

Отсюда:

1. Раскладываем 36 и 125 на простые множители:

36 = 2 · 2 · 3 · 3;

36 2
18 2
9 3
3 3
1

125 = 5 · 5 · 5;

125 5
25 5
5 5
1

2. Берем множители из первого разложения, добавляем к ним отсутствующие множители со второго разложения и вычисляем произведение.

Ответ: НОК (36; 125) = 2 · 2 · 3 · 3 · 5 · 5 · 5 = 4500

Калькулятор нахождения НОД и НОК

Введите 2 числа и получите подробное решение.

Смотрите также

Подписаться
Уведомить о
guest
0 комментариев
Межтекстовые Отзывы
Посмотреть все комментарии