Дано: два числа 33 и 79.
Найти: НОД и НОК этих чисел.
Нахождение НОД 33 и 79
Наибольший общий делитель (НОД) целых чисел 33 и 79 — это наибольшее из их общих делителей, т.е наибольшее число, на которое оба делятся без остатка.
Как найти НОД 33 и 79:
- разложить 33 и 79 на простые множители;
- выбрать одинаковые множители, входящие в оба разложения;
- найти их произведение.
Отсюда:
1. Раскладываем 33 и 79 на простые множители:
79 = 79;
79 | 79 |
1 |
33 = 3 · 11;
33 | 3 |
11 | 11 |
1 |
Частный случай, т.к. 33 и 79 — взаимно простые числа
Нахождение НОК 33 и 79
Наименьшее общее кратное (НОК) целых чисел 33 и 79 — это наименьшее натуральное число, которое делится на 33 и на 79 без остатка.
Как найти НОК 33 и 79:
- разложить 33 и 79 на простые множители;
- выбрать одну группу множителей;
- добавить к ним множители из второй группы, которые отсутствуют в выбранной;
- найти их произведение.
Отсюда:
1. Раскладываем 33 и 79 на простые множители:
33 = 3 · 11;
33 | 3 |
11 | 11 |
1 |
79 = 79;
79 | 79 |
1 |
2. Берем множители из первого разложения, добавляем к ним отсутствующие множители со второго разложения и вычисляем произведение.
Ответ: НОК (33; 79) = 3 · 11 · 79 = 2607