Найти: НОД и НОК этих чисел.
Нахождение НОД 300 и 131
Наибольший общий делитель (НОД) целых чисел 300 и 131 — это наибольшее из их общих делителей, т.е наибольшее число, на которое оба делятся без остатка.
Как найти НОД 300 и 131:
- разложить 300 и 131 на простые множители;
- выбрать одинаковые множители, входящие в оба разложения;
- найти их произведение.
Отсюда:
1. Раскладываем 300 и 131 на простые множители:
300 = 2 · 2 · 3 · 5 · 5;
300 | 2 |
150 | 2 |
75 | 3 |
25 | 5 |
5 | 5 |
1 |
131 = 131;
131 | 131 |
1 |
Частный случай, т.к. 300 и 131 — взаимно простые числа
Нахождение НОК 300 и 131
Наименьшее общее кратное (НОК) целых чисел 300 и 131 — это наименьшее натуральное число, которое делится на 300 и на 131 без остатка.
Как найти НОК 300 и 131:
- разложить 300 и 131 на простые множители;
- выбрать одну группу множителей;
- добавить к ним множители из второй группы, которые отсутствуют в выбранной;
- найти их произведение.
Отсюда:
1. Раскладываем 300 и 131 на простые множители:
300 = 2 · 2 · 3 · 5 · 5;
300 | 2 |
150 | 2 |
75 | 3 |
25 | 5 |
5 | 5 |
1 |
131 = 131;
131 | 131 |
1 |
2. Берем множители из первого разложения, добавляем к ним отсутствующие множители со второго разложения и вычисляем произведение.