Найти: НОД и НОК этих чисел.
Нахождение НОД 294 и 756
Наибольший общий делитель (НОД) целых чисел 294 и 756 — это наибольшее из их общих делителей, т.е наибольшее число, на которое оба делятся без остатка.
Как найти НОД 294 и 756:
- разложить 294 и 756 на простые множители;
- выбрать одинаковые множители, входящие в оба разложения;
- найти их произведение.
Отсюда:
1. Раскладываем 294 и 756 на простые множители:
756 = 2 · 2 · 3 · 3 · 3 · 7;
756 | 2 |
378 | 2 |
189 | 3 |
63 | 3 |
21 | 3 |
7 | 7 |
1 |
294 = 2 · 3 · 7 · 7;
294 | 2 |
147 | 3 |
49 | 7 |
7 | 7 |
1 |
2. Выбираем одинаковые множители. В нашем случае это: 2, 3, 7
3. Перемножаем эти множители и получаем: 2 · 3 · 7 = 42
Нахождение НОК 294 и 756
Наименьшее общее кратное (НОК) целых чисел 294 и 756 — это наименьшее натуральное число, которое делится на 294 и на 756 без остатка.
Как найти НОК 294 и 756:
- разложить 294 и 756 на простые множители;
- выбрать одну группу множителей;
- добавить к ним множители из второй группы, которые отсутствуют в выбранной;
- найти их произведение.
Отсюда:
1. Раскладываем 294 и 756 на простые множители:
294 = 2 · 3 · 7 · 7;
294 | 2 |
147 | 3 |
49 | 7 |
7 | 7 |
1 |
756 = 2 · 2 · 3 · 3 · 3 · 7;
756 | 2 |
378 | 2 |
189 | 3 |
63 | 3 |
21 | 3 |
7 | 7 |
1 |
2. Берем множители из первого разложения, добавляем к ним отсутствующие множители со второго разложения и вычисляем произведение.