Найти: НОД и НОК этих чисел.
Нахождение НОД 2548 и 7875
Наибольший общий делитель (НОД) целых чисел 2548 и 7875 — это наибольшее из их общих делителей, т.е наибольшее число, на которое оба делятся без остатка.
Как найти НОД 2548 и 7875:
- разложить 2548 и 7875 на простые множители;
- выбрать одинаковые множители, входящие в оба разложения;
- найти их произведение.
Отсюда:
1. Раскладываем 2548 и 7875 на простые множители:
7875 = 3 · 3 · 5 · 5 · 5 · 7;
7875 | 3 |
2625 | 3 |
875 | 5 |
175 | 5 |
35 | 5 |
7 | 7 |
1 |
2548 = 2 · 2 · 7 · 7 · 13;
2548 | 2 |
1274 | 2 |
637 | 7 |
91 | 7 |
13 | 13 |
1 |
2. Выбираем одинаковые множители. В нашем случае это: 7
3. Перемножаем эти множители и получаем: 7 = 7
Нахождение НОК 2548 и 7875
Наименьшее общее кратное (НОК) целых чисел 2548 и 7875 — это наименьшее натуральное число, которое делится на 2548 и на 7875 без остатка.
Как найти НОК 2548 и 7875:
- разложить 2548 и 7875 на простые множители;
- выбрать одну группу множителей;
- добавить к ним множители из второй группы, которые отсутствуют в выбранной;
- найти их произведение.
Отсюда:
1. Раскладываем 2548 и 7875 на простые множители:
2548 = 2 · 2 · 7 · 7 · 13;
2548 | 2 |
1274 | 2 |
637 | 7 |
91 | 7 |
13 | 13 |
1 |
7875 = 3 · 3 · 5 · 5 · 5 · 7;
7875 | 3 |
2625 | 3 |
875 | 5 |
175 | 5 |
35 | 5 |
7 | 7 |
1 |
2. Берем множители из первого разложения, добавляем к ним отсутствующие множители со второго разложения и вычисляем произведение.