Найти НОД и НОК чисел 240 и 4000

Дано: два числа 240 и 4000.

Найти: НОД и НОК этих чисел.

Нахождение НОД 240 и 4000

Наибольший общий делитель (НОД) целых чисел 240 и 4000 — это наибольшее из их общих делителей, т.е наибольшее число, на которое оба делятся без остатка.

Как найти НОД 240 и 4000:

  1. разложить 240 и 4000 на простые множители;
  2. выбрать одинаковые множители, входящие в оба разложения;
  3. найти их произведение.

Отсюда:

1. Раскладываем 240 и 4000 на простые множители:

4000 = 2 · 2 · 2 · 2 · 2 · 5 · 5 · 5;

4000 2
2000 2
1000 2
500 2
250 2
125 5
25 5
5 5
1

240 = 2 · 2 · 2 · 2 · 3 · 5;

240 2
120 2
60 2
30 2
15 3
5 5
1

2. Выбираем одинаковые множители. В нашем случае это: 2, 2, 2, 2, 5

3. Перемножаем эти множители и получаем: 2 · 2 · 2 · 2 · 5 = 80

Ответ: НОД (240; 4000) = 2 · 2 · 2 · 2 · 5 = 80.

Нахождение НОК 240 и 4000

Наименьшее общее кратное (НОК) целых чисел 240 и 4000 — это наименьшее натуральное число, которое делится на 240 и на 4000 без остатка.

Как найти НОК 240 и 4000:

  1. разложить 240 и 4000 на простые множители;
  2. выбрать одну группу множителей;
  3. добавить к ним множители из второй группы, которые отсутствуют в выбранной;
  4. найти их произведение.

Отсюда:

1. Раскладываем 240 и 4000 на простые множители:

240 = 2 · 2 · 2 · 2 · 3 · 5;

240 2
120 2
60 2
30 2
15 3
5 5
1

4000 = 2 · 2 · 2 · 2 · 2 · 5 · 5 · 5;

4000 2
2000 2
1000 2
500 2
250 2
125 5
25 5
5 5
1

2. Берем множители из первого разложения, добавляем к ним отсутствующие множители со второго разложения и вычисляем произведение.

Ответ: НОК (240; 4000) = 2 · 2 · 2 · 2 · 2 · 5 · 5 · 5 · 3 = 12000

Калькулятор нахождения НОД и НОК

Введите 2 числа и получите подробное решение.

Смотрите также

Подписаться
Уведомить о
guest
0 комментариев
Межтекстовые Отзывы
Посмотреть все комментарии