Найти: НОД и НОК этих чисел.
Нахождение НОД 2352 и 7980
Наибольший общий делитель (НОД) целых чисел 2352 и 7980 — это наибольшее из их общих делителей, т.е наибольшее число, на которое оба делятся без остатка.
Как найти НОД 2352 и 7980:
- разложить 2352 и 7980 на простые множители;
- выбрать одинаковые множители, входящие в оба разложения;
- найти их произведение.
Отсюда:
1. Раскладываем 2352 и 7980 на простые множители:
7980 = 2 · 2 · 3 · 5 · 7 · 19;
7980 | 2 |
3990 | 2 |
1995 | 3 |
665 | 5 |
133 | 7 |
19 | 19 |
1 |
2352 = 2 · 2 · 2 · 2 · 3 · 7 · 7;
2352 | 2 |
1176 | 2 |
588 | 2 |
294 | 2 |
147 | 3 |
49 | 7 |
7 | 7 |
1 |
2. Выбираем одинаковые множители. В нашем случае это: 2, 2, 3, 7
3. Перемножаем эти множители и получаем: 2 · 2 · 3 · 7 = 84
Нахождение НОК 2352 и 7980
Наименьшее общее кратное (НОК) целых чисел 2352 и 7980 — это наименьшее натуральное число, которое делится на 2352 и на 7980 без остатка.
Как найти НОК 2352 и 7980:
- разложить 2352 и 7980 на простые множители;
- выбрать одну группу множителей;
- добавить к ним множители из второй группы, которые отсутствуют в выбранной;
- найти их произведение.
Отсюда:
1. Раскладываем 2352 и 7980 на простые множители:
2352 = 2 · 2 · 2 · 2 · 3 · 7 · 7;
2352 | 2 |
1176 | 2 |
588 | 2 |
294 | 2 |
147 | 3 |
49 | 7 |
7 | 7 |
1 |
7980 = 2 · 2 · 3 · 5 · 7 · 19;
7980 | 2 |
3990 | 2 |
1995 | 3 |
665 | 5 |
133 | 7 |
19 | 19 |
1 |
2. Берем множители из первого разложения, добавляем к ним отсутствующие множители со второго разложения и вычисляем произведение.