Найти: НОД и НОК этих чисел.
Нахождение НОД 225 и 335
Наибольший общий делитель (НОД) целых чисел 225 и 335 — это наибольшее из их общих делителей, т.е наибольшее число, на которое оба делятся без остатка.
Как найти НОД 225 и 335:
- разложить 225 и 335 на простые множители;
- выбрать одинаковые множители, входящие в оба разложения;
- найти их произведение.
Отсюда:
1. Раскладываем 225 и 335 на простые множители:
335 = 5 · 67;
335 | 5 |
67 | 67 |
1 |
225 = 3 · 3 · 5 · 5;
225 | 3 |
75 | 3 |
25 | 5 |
5 | 5 |
1 |
2. Выбираем одинаковые множители. В нашем случае это: 5
3. Перемножаем эти множители и получаем: 5 = 5
Нахождение НОК 225 и 335
Наименьшее общее кратное (НОК) целых чисел 225 и 335 — это наименьшее натуральное число, которое делится на 225 и на 335 без остатка.
Как найти НОК 225 и 335:
- разложить 225 и 335 на простые множители;
- выбрать одну группу множителей;
- добавить к ним множители из второй группы, которые отсутствуют в выбранной;
- найти их произведение.
Отсюда:
1. Раскладываем 225 и 335 на простые множители:
225 = 3 · 3 · 5 · 5;
225 | 3 |
75 | 3 |
25 | 5 |
5 | 5 |
1 |
335 = 5 · 67;
335 | 5 |
67 | 67 |
1 |
2. Берем множители из первого разложения, добавляем к ним отсутствующие множители со второго разложения и вычисляем произведение.