Дано: два числа 19 и 425.
Найти: НОД и НОК этих чисел.
Нахождение НОД 19 и 425
Наибольший общий делитель (НОД) целых чисел 19 и 425 — это наибольшее из их общих делителей, т.е наибольшее число, на которое оба делятся без остатка.
Как найти НОД 19 и 425:
- разложить 19 и 425 на простые множители;
- выбрать одинаковые множители, входящие в оба разложения;
- найти их произведение.
Отсюда:
1. Раскладываем 19 и 425 на простые множители:
425 = 5 · 5 · 17;
425 | 5 |
85 | 5 |
17 | 17 |
1 |
19 = 19;
19 | 19 |
1 |
Частный случай, т.к. 19 и 425 — взаимно простые числа
Нахождение НОК 19 и 425
Наименьшее общее кратное (НОК) целых чисел 19 и 425 — это наименьшее натуральное число, которое делится на 19 и на 425 без остатка.
Как найти НОК 19 и 425:
- разложить 19 и 425 на простые множители;
- выбрать одну группу множителей;
- добавить к ним множители из второй группы, которые отсутствуют в выбранной;
- найти их произведение.
Отсюда:
1. Раскладываем 19 и 425 на простые множители:
19 = 19;
19 | 19 |
1 |
425 = 5 · 5 · 17;
425 | 5 |
85 | 5 |
17 | 17 |
1 |
2. Берем множители из первого разложения, добавляем к ним отсутствующие множители со второго разложения и вычисляем произведение.
Ответ: НОК (19; 425) = 5 · 5 · 17 · 19 = 8075