Найти НОД и НОК чисел 18 и 64

Дано: два числа 18 и 64.

Найти: НОД и НОК этих чисел.

Нахождение НОД 18 и 64

Наибольший общий делитель (НОД) целых чисел 18 и 64 — это наибольшее из их общих делителей, т.е наибольшее число, на которое оба делятся без остатка.

Как найти НОД 18 и 64:

  1. разложить 18 и 64 на простые множители;
  2. выбрать одинаковые множители, входящие в оба разложения;
  3. найти их произведение.

Отсюда:

1. Раскладываем 18 и 64 на простые множители:

64 = 2 · 2 · 2 · 2 · 2 · 2;

64 2
32 2
16 2
8 2
4 2
2 2
1

18 = 2 · 3 · 3;

18 2
9 3
3 3
1

2. Выбираем одинаковые множители. В нашем случае это: 2

3. Перемножаем эти множители и получаем: 2 = 2

Ответ: НОД (18; 64) = 2 = 2.

Нахождение НОК 18 и 64

Наименьшее общее кратное (НОК) целых чисел 18 и 64 — это наименьшее натуральное число, которое делится на 18 и на 64 без остатка.

Как найти НОК 18 и 64:

  1. разложить 18 и 64 на простые множители;
  2. выбрать одну группу множителей;
  3. добавить к ним множители из второй группы, которые отсутствуют в выбранной;
  4. найти их произведение.

Отсюда:

1. Раскладываем 18 и 64 на простые множители:

18 = 2 · 3 · 3;

18 2
9 3
3 3
1

64 = 2 · 2 · 2 · 2 · 2 · 2;

64 2
32 2
16 2
8 2
4 2
2 2
1

2. Берем множители из первого разложения, добавляем к ним отсутствующие множители со второго разложения и вычисляем произведение.

Ответ: НОК (18; 64) = 2 · 2 · 2 · 2 · 2 · 2 · 3 · 3 = 576

Калькулятор нахождения НОД и НОК

Введите 2 числа и получите подробное решение.

Смотрите также

Подписаться
Уведомить о
guest
0 комментариев
Межтекстовые Отзывы
Посмотреть все комментарии