Дано: два числа 18 и 257.
Найти: НОД и НОК этих чисел.
Нахождение НОД 18 и 257
Наибольший общий делитель (НОД) целых чисел 18 и 257 — это наибольшее из их общих делителей, т.е наибольшее число, на которое оба делятся без остатка.
Как найти НОД 18 и 257:
- разложить 18 и 257 на простые множители;
- выбрать одинаковые множители, входящие в оба разложения;
- найти их произведение.
Отсюда:
1. Раскладываем 18 и 257 на простые множители:
257 = 257;
257 | 257 |
1 |
18 = 2 · 3 · 3;
18 | 2 |
9 | 3 |
3 | 3 |
1 |
Частный случай, т.к. 18 и 257 — взаимно простые числа
Нахождение НОК 18 и 257
Наименьшее общее кратное (НОК) целых чисел 18 и 257 — это наименьшее натуральное число, которое делится на 18 и на 257 без остатка.
Как найти НОК 18 и 257:
- разложить 18 и 257 на простые множители;
- выбрать одну группу множителей;
- добавить к ним множители из второй группы, которые отсутствуют в выбранной;
- найти их произведение.
Отсюда:
1. Раскладываем 18 и 257 на простые множители:
18 = 2 · 3 · 3;
18 | 2 |
9 | 3 |
3 | 3 |
1 |
257 = 257;
257 | 257 |
1 |
2. Берем множители из первого разложения, добавляем к ним отсутствующие множители со второго разложения и вычисляем произведение.
Ответ: НОК (18; 257) = 2 · 3 · 3 · 257 = 4626