Найти: НОД и НОК этих чисел.
Нахождение НОД 1736 и 496
Наибольший общий делитель (НОД) целых чисел 1736 и 496 — это наибольшее из их общих делителей, т.е наибольшее число, на которое оба делятся без остатка.
Как найти НОД 1736 и 496:
- разложить 1736 и 496 на простые множители;
- выбрать одинаковые множители, входящие в оба разложения;
- найти их произведение.
Отсюда:
1. Раскладываем 1736 и 496 на простые множители:
1736 = 2 · 2 · 2 · 7 · 31;
1736 | 2 |
868 | 2 |
434 | 2 |
217 | 7 |
31 | 31 |
1 |
496 = 2 · 2 · 2 · 2 · 31;
496 | 2 |
248 | 2 |
124 | 2 |
62 | 2 |
31 | 31 |
1 |
2. Выбираем одинаковые множители. В нашем случае это: 2, 2, 2, 31
3. Перемножаем эти множители и получаем: 2 · 2 · 2 · 31 = 248
Нахождение НОК 1736 и 496
Наименьшее общее кратное (НОК) целых чисел 1736 и 496 — это наименьшее натуральное число, которое делится на 1736 и на 496 без остатка.
Как найти НОК 1736 и 496:
- разложить 1736 и 496 на простые множители;
- выбрать одну группу множителей;
- добавить к ним множители из второй группы, которые отсутствуют в выбранной;
- найти их произведение.
Отсюда:
1. Раскладываем 1736 и 496 на простые множители:
1736 = 2 · 2 · 2 · 7 · 31;
1736 | 2 |
868 | 2 |
434 | 2 |
217 | 7 |
31 | 31 |
1 |
496 = 2 · 2 · 2 · 2 · 31;
496 | 2 |
248 | 2 |
124 | 2 |
62 | 2 |
31 | 31 |
1 |
2. Берем множители из первого разложения, добавляем к ним отсутствующие множители со второго разложения и вычисляем произведение.