Найти: НОД и НОК этих чисел.
Нахождение НОД 160 и 112
Наибольший общий делитель (НОД) целых чисел 160 и 112 — это наибольшее из их общих делителей, т.е наибольшее число, на которое оба делятся без остатка.
Как найти НОД 160 и 112:
- разложить 160 и 112 на простые множители;
- выбрать одинаковые множители, входящие в оба разложения;
- найти их произведение.
Отсюда:
1. Раскладываем 160 и 112 на простые множители:
160 = 2 · 2 · 2 · 2 · 2 · 5;
160 | 2 |
80 | 2 |
40 | 2 |
20 | 2 |
10 | 2 |
5 | 5 |
1 |
112 = 2 · 2 · 2 · 2 · 7;
112 | 2 |
56 | 2 |
28 | 2 |
14 | 2 |
7 | 7 |
1 |
2. Выбираем одинаковые множители. В нашем случае это: 2, 2, 2, 2
3. Перемножаем эти множители и получаем: 2 · 2 · 2 · 2 = 16
Нахождение НОК 160 и 112
Наименьшее общее кратное (НОК) целых чисел 160 и 112 — это наименьшее натуральное число, которое делится на 160 и на 112 без остатка.
Как найти НОК 160 и 112:
- разложить 160 и 112 на простые множители;
- выбрать одну группу множителей;
- добавить к ним множители из второй группы, которые отсутствуют в выбранной;
- найти их произведение.
Отсюда:
1. Раскладываем 160 и 112 на простые множители:
160 = 2 · 2 · 2 · 2 · 2 · 5;
160 | 2 |
80 | 2 |
40 | 2 |
20 | 2 |
10 | 2 |
5 | 5 |
1 |
112 = 2 · 2 · 2 · 2 · 7;
112 | 2 |
56 | 2 |
28 | 2 |
14 | 2 |
7 | 7 |
1 |
2. Берем множители из первого разложения, добавляем к ним отсутствующие множители со второго разложения и вычисляем произведение.