Найти: НОД и НОК этих чисел.
Нахождение НОД 1575 и 2940
Наибольший общий делитель (НОД) целых чисел 1575 и 2940 — это наибольшее из их общих делителей, т.е наибольшее число, на которое оба делятся без остатка.
Как найти НОД 1575 и 2940:
- разложить 1575 и 2940 на простые множители;
- выбрать одинаковые множители, входящие в оба разложения;
- найти их произведение.
Отсюда:
1. Раскладываем 1575 и 2940 на простые множители:
2940 = 2 · 2 · 3 · 5 · 7 · 7;
2940 | 2 |
1470 | 2 |
735 | 3 |
245 | 5 |
49 | 7 |
7 | 7 |
1 |
1575 = 3 · 3 · 5 · 5 · 7;
1575 | 3 |
525 | 3 |
175 | 5 |
35 | 5 |
7 | 7 |
1 |
2. Выбираем одинаковые множители. В нашем случае это: 3, 5, 7
3. Перемножаем эти множители и получаем: 3 · 5 · 7 = 105
Нахождение НОК 1575 и 2940
Наименьшее общее кратное (НОК) целых чисел 1575 и 2940 — это наименьшее натуральное число, которое делится на 1575 и на 2940 без остатка.
Как найти НОК 1575 и 2940:
- разложить 1575 и 2940 на простые множители;
- выбрать одну группу множителей;
- добавить к ним множители из второй группы, которые отсутствуют в выбранной;
- найти их произведение.
Отсюда:
1. Раскладываем 1575 и 2940 на простые множители:
1575 = 3 · 3 · 5 · 5 · 7;
1575 | 3 |
525 | 3 |
175 | 5 |
35 | 5 |
7 | 7 |
1 |
2940 = 2 · 2 · 3 · 5 · 7 · 7;
2940 | 2 |
1470 | 2 |
735 | 3 |
245 | 5 |
49 | 7 |
7 | 7 |
1 |
2. Берем множители из первого разложения, добавляем к ним отсутствующие множители со второго разложения и вычисляем произведение.