Найти НОД и НОК чисел 1540 и 462

Дано: два числа 1540 и 462.

Найти: НОД и НОК этих чисел.

Нахождение НОД 1540 и 462

Наибольший общий делитель (НОД) целых чисел 1540 и 462 — это наибольшее из их общих делителей, т.е наибольшее число, на которое оба делятся без остатка.

Как найти НОД 1540 и 462:

  1. разложить 1540 и 462 на простые множители;
  2. выбрать одинаковые множители, входящие в оба разложения;
  3. найти их произведение.

Отсюда:

1. Раскладываем 1540 и 462 на простые множители:

1540 = 2 · 2 · 5 · 7 · 11;

1540 2
770 2
385 5
77 7
11 11
1

462 = 2 · 3 · 7 · 11;

462 2
231 3
77 7
11 11
1

2. Выбираем одинаковые множители. В нашем случае это: 2, 7, 11

3. Перемножаем эти множители и получаем: 2 · 7 · 11 = 154

Ответ: НОД (1540; 462) = 2 · 7 · 11 = 154.

Нахождение НОК 1540 и 462

Наименьшее общее кратное (НОК) целых чисел 1540 и 462 — это наименьшее натуральное число, которое делится на 1540 и на 462 без остатка.

Как найти НОК 1540 и 462:

  1. разложить 1540 и 462 на простые множители;
  2. выбрать одну группу множителей;
  3. добавить к ним множители из второй группы, которые отсутствуют в выбранной;
  4. найти их произведение.

Отсюда:

1. Раскладываем 1540 и 462 на простые множители:

1540 = 2 · 2 · 5 · 7 · 11;

1540 2
770 2
385 5
77 7
11 11
1

462 = 2 · 3 · 7 · 11;

462 2
231 3
77 7
11 11
1

2. Берем множители из первого разложения, добавляем к ним отсутствующие множители со второго разложения и вычисляем произведение.

Ответ: НОК (1540; 462) = 2 · 2 · 5 · 7 · 11 · 3 = 4620

Калькулятор нахождения НОД и НОК

Введите 2 числа и получите подробное решение.

Смотрите также

Подписаться
Уведомить о
guest
0 комментариев
Межтекстовые Отзывы
Посмотреть все комментарии