Найти: НОД и НОК этих чисел.
Нахождение НОД 1456 и 2640
Наибольший общий делитель (НОД) целых чисел 1456 и 2640 — это наибольшее из их общих делителей, т.е наибольшее число, на которое оба делятся без остатка.
Как найти НОД 1456 и 2640:
- разложить 1456 и 2640 на простые множители;
- выбрать одинаковые множители, входящие в оба разложения;
- найти их произведение.
Отсюда:
1. Раскладываем 1456 и 2640 на простые множители:
2640 = 2 · 2 · 2 · 2 · 3 · 5 · 11;
2640 | 2 |
1320 | 2 |
660 | 2 |
330 | 2 |
165 | 3 |
55 | 5 |
11 | 11 |
1 |
1456 = 2 · 2 · 2 · 2 · 7 · 13;
1456 | 2 |
728 | 2 |
364 | 2 |
182 | 2 |
91 | 7 |
13 | 13 |
1 |
2. Выбираем одинаковые множители. В нашем случае это: 2, 2, 2, 2
3. Перемножаем эти множители и получаем: 2 · 2 · 2 · 2 = 16
Нахождение НОК 1456 и 2640
Наименьшее общее кратное (НОК) целых чисел 1456 и 2640 — это наименьшее натуральное число, которое делится на 1456 и на 2640 без остатка.
Как найти НОК 1456 и 2640:
- разложить 1456 и 2640 на простые множители;
- выбрать одну группу множителей;
- добавить к ним множители из второй группы, которые отсутствуют в выбранной;
- найти их произведение.
Отсюда:
1. Раскладываем 1456 и 2640 на простые множители:
1456 = 2 · 2 · 2 · 2 · 7 · 13;
1456 | 2 |
728 | 2 |
364 | 2 |
182 | 2 |
91 | 7 |
13 | 13 |
1 |
2640 = 2 · 2 · 2 · 2 · 3 · 5 · 11;
2640 | 2 |
1320 | 2 |
660 | 2 |
330 | 2 |
165 | 3 |
55 | 5 |
11 | 11 |
1 |
2. Берем множители из первого разложения, добавляем к ним отсутствующие множители со второго разложения и вычисляем произведение.