Найти НОД и НОК чисел 1320 и 3060

Дано: два числа 1320 и 3060.

Найти: НОД и НОК этих чисел.

Нахождение НОД 1320 и 3060

Наибольший общий делитель (НОД) целых чисел 1320 и 3060 — это наибольшее из их общих делителей, т.е наибольшее число, на которое оба делятся без остатка.

Как найти НОД 1320 и 3060:

  1. разложить 1320 и 3060 на простые множители;
  2. выбрать одинаковые множители, входящие в оба разложения;
  3. найти их произведение.

Отсюда:

1. Раскладываем 1320 и 3060 на простые множители:

3060 = 2 · 2 · 3 · 3 · 5 · 17;

3060 2
1530 2
765 3
255 3
85 5
17 17
1

1320 = 2 · 2 · 2 · 3 · 5 · 11;

1320 2
660 2
330 2
165 3
55 5
11 11
1

2. Выбираем одинаковые множители. В нашем случае это: 2, 2, 3, 5

3. Перемножаем эти множители и получаем: 2 · 2 · 3 · 5 = 60

Ответ: НОД (1320; 3060) = 2 · 2 · 3 · 5 = 60.

Нахождение НОК 1320 и 3060

Наименьшее общее кратное (НОК) целых чисел 1320 и 3060 — это наименьшее натуральное число, которое делится на 1320 и на 3060 без остатка.

Как найти НОК 1320 и 3060:

  1. разложить 1320 и 3060 на простые множители;
  2. выбрать одну группу множителей;
  3. добавить к ним множители из второй группы, которые отсутствуют в выбранной;
  4. найти их произведение.

Отсюда:

1. Раскладываем 1320 и 3060 на простые множители:

1320 = 2 · 2 · 2 · 3 · 5 · 11;

1320 2
660 2
330 2
165 3
55 5
11 11
1

3060 = 2 · 2 · 3 · 3 · 5 · 17;

3060 2
1530 2
765 3
255 3
85 5
17 17
1

2. Берем множители из первого разложения, добавляем к ним отсутствующие множители со второго разложения и вычисляем произведение.

Ответ: НОК (1320; 3060) = 2 · 2 · 2 · 3 · 5 · 11 · 3 · 17 = 67320

Калькулятор нахождения НОД и НОК

Введите 2 числа и получите подробное решение.

Смотрите также

Подписаться
Уведомить о
guest
0 комментариев
Межтекстовые Отзывы
Посмотреть все комментарии