Найти НОД и НОК чисел 1280 и 1840

Дано: два числа 1280 и 1840.

Найти: НОД и НОК этих чисел.

Нахождение НОД 1280 и 1840

Наибольший общий делитель (НОД) целых чисел 1280 и 1840 — это наибольшее из их общих делителей, т.е наибольшее число, на которое оба делятся без остатка.

Как найти НОД 1280 и 1840:

  1. разложить 1280 и 1840 на простые множители;
  2. выбрать одинаковые множители, входящие в оба разложения;
  3. найти их произведение.

Отсюда:

1. Раскладываем 1280 и 1840 на простые множители:

1840 = 2 · 2 · 2 · 2 · 5 · 23;

1840 2
920 2
460 2
230 2
115 5
23 23
1

1280 = 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 5;

1280 2
640 2
320 2
160 2
80 2
40 2
20 2
10 2
5 5
1

2. Выбираем одинаковые множители. В нашем случае это: 2, 2, 2, 2, 5

3. Перемножаем эти множители и получаем: 2 · 2 · 2 · 2 · 5 = 80

Ответ: НОД (1280; 1840) = 2 · 2 · 2 · 2 · 5 = 80.

Нахождение НОК 1280 и 1840

Наименьшее общее кратное (НОК) целых чисел 1280 и 1840 — это наименьшее натуральное число, которое делится на 1280 и на 1840 без остатка.

Как найти НОК 1280 и 1840:

  1. разложить 1280 и 1840 на простые множители;
  2. выбрать одну группу множителей;
  3. добавить к ним множители из второй группы, которые отсутствуют в выбранной;
  4. найти их произведение.

Отсюда:

1. Раскладываем 1280 и 1840 на простые множители:

1280 = 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 5;

1280 2
640 2
320 2
160 2
80 2
40 2
20 2
10 2
5 5
1

1840 = 2 · 2 · 2 · 2 · 5 · 23;

1840 2
920 2
460 2
230 2
115 5
23 23
1

2. Берем множители из первого разложения, добавляем к ним отсутствующие множители со второго разложения и вычисляем произведение.

Ответ: НОК (1280; 1840) = 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 5 · 23 = 29440

Калькулятор нахождения НОД и НОК

Введите 2 числа и получите подробное решение.

Смотрите также

Подписаться
Уведомить о
guest
0 комментариев
Межтекстовые Отзывы
Посмотреть все комментарии