Найти: НОД и НОК этих чисел.
Нахождение НОД 1275 и 6725
Наибольший общий делитель (НОД) целых чисел 1275 и 6725 — это наибольшее из их общих делителей, т.е наибольшее число, на которое оба делятся без остатка.
Как найти НОД 1275 и 6725:
- разложить 1275 и 6725 на простые множители;
- выбрать одинаковые множители, входящие в оба разложения;
- найти их произведение.
Отсюда:
1. Раскладываем 1275 и 6725 на простые множители:
6725 = 5 · 5 · 269;
6725 | 5 |
1345 | 5 |
269 | 269 |
1 |
1275 = 3 · 5 · 5 · 17;
1275 | 3 |
425 | 5 |
85 | 5 |
17 | 17 |
1 |
2. Выбираем одинаковые множители. В нашем случае это: 5, 5
3. Перемножаем эти множители и получаем: 5 · 5 = 25
Нахождение НОК 1275 и 6725
Наименьшее общее кратное (НОК) целых чисел 1275 и 6725 — это наименьшее натуральное число, которое делится на 1275 и на 6725 без остатка.
Как найти НОК 1275 и 6725:
- разложить 1275 и 6725 на простые множители;
- выбрать одну группу множителей;
- добавить к ним множители из второй группы, которые отсутствуют в выбранной;
- найти их произведение.
Отсюда:
1. Раскладываем 1275 и 6725 на простые множители:
1275 = 3 · 5 · 5 · 17;
1275 | 3 |
425 | 5 |
85 | 5 |
17 | 17 |
1 |
6725 = 5 · 5 · 269;
6725 | 5 |
1345 | 5 |
269 | 269 |
1 |
2. Берем множители из первого разложения, добавляем к ним отсутствующие множители со второго разложения и вычисляем произведение.