Найти: НОД и НОК этих чисел.
Нахождение НОД 1269 и 2835
Наибольший общий делитель (НОД) целых чисел 1269 и 2835 — это наибольшее из их общих делителей, т.е наибольшее число, на которое оба делятся без остатка.
Как найти НОД 1269 и 2835:
- разложить 1269 и 2835 на простые множители;
- выбрать одинаковые множители, входящие в оба разложения;
- найти их произведение.
Отсюда:
1. Раскладываем 1269 и 2835 на простые множители:
2835 = 3 · 3 · 3 · 3 · 5 · 7;
2835 | 3 |
945 | 3 |
315 | 3 |
105 | 3 |
35 | 5 |
7 | 7 |
1 |
1269 = 3 · 3 · 3 · 47;
1269 | 3 |
423 | 3 |
141 | 3 |
47 | 47 |
1 |
2. Выбираем одинаковые множители. В нашем случае это: 3, 3, 3
3. Перемножаем эти множители и получаем: 3 · 3 · 3 = 27
Нахождение НОК 1269 и 2835
Наименьшее общее кратное (НОК) целых чисел 1269 и 2835 — это наименьшее натуральное число, которое делится на 1269 и на 2835 без остатка.
Как найти НОК 1269 и 2835:
- разложить 1269 и 2835 на простые множители;
- выбрать одну группу множителей;
- добавить к ним множители из второй группы, которые отсутствуют в выбранной;
- найти их произведение.
Отсюда:
1. Раскладываем 1269 и 2835 на простые множители:
1269 = 3 · 3 · 3 · 47;
1269 | 3 |
423 | 3 |
141 | 3 |
47 | 47 |
1 |
2835 = 3 · 3 · 3 · 3 · 5 · 7;
2835 | 3 |
945 | 3 |
315 | 3 |
105 | 3 |
35 | 5 |
7 | 7 |
1 |
2. Берем множители из первого разложения, добавляем к ним отсутствующие множители со второго разложения и вычисляем произведение.