Найти: НОД и НОК этих чисел.
Нахождение НОД 1240 и 80
Наибольший общий делитель (НОД) целых чисел 1240 и 80 — это наибольшее из их общих делителей, т.е наибольшее число, на которое оба делятся без остатка.
Как найти НОД 1240 и 80:
- разложить 1240 и 80 на простые множители;
- выбрать одинаковые множители, входящие в оба разложения;
- найти их произведение.
Отсюда:
1. Раскладываем 1240 и 80 на простые множители:
1240 = 2 · 2 · 2 · 5 · 31;
1240 | 2 |
620 | 2 |
310 | 2 |
155 | 5 |
31 | 31 |
1 |
80 = 2 · 2 · 2 · 2 · 5;
80 | 2 |
40 | 2 |
20 | 2 |
10 | 2 |
5 | 5 |
1 |
2. Выбираем одинаковые множители. В нашем случае это: 2, 2, 2, 5
3. Перемножаем эти множители и получаем: 2 · 2 · 2 · 5 = 40
Нахождение НОК 1240 и 80
Наименьшее общее кратное (НОК) целых чисел 1240 и 80 — это наименьшее натуральное число, которое делится на 1240 и на 80 без остатка.
Как найти НОК 1240 и 80:
- разложить 1240 и 80 на простые множители;
- выбрать одну группу множителей;
- добавить к ним множители из второй группы, которые отсутствуют в выбранной;
- найти их произведение.
Отсюда:
1. Раскладываем 1240 и 80 на простые множители:
1240 = 2 · 2 · 2 · 5 · 31;
1240 | 2 |
620 | 2 |
310 | 2 |
155 | 5 |
31 | 31 |
1 |
80 = 2 · 2 · 2 · 2 · 5;
80 | 2 |
40 | 2 |
20 | 2 |
10 | 2 |
5 | 5 |
1 |
2. Берем множители из первого разложения, добавляем к ним отсутствующие множители со второго разложения и вычисляем произведение.