Найти: НОД и НОК этих чисел.
Нахождение НОД 123456789 и 987654321
Наибольший общий делитель (НОД) целых чисел 123456789 и 987654321 — это наибольшее из их общих делителей, т.е наибольшее число, на которое оба делятся без остатка.
Как найти НОД 123456789 и 987654321:
- разложить 123456789 и 987654321 на простые множители;
- выбрать одинаковые множители, входящие в оба разложения;
- найти их произведение.
Отсюда:
1. Раскладываем 123456789 и 987654321 на простые множители:
987654321 = 3 · 3 · 17 · 17 · 379721;
987654321 | 3 |
329218107 | 3 |
109739369 | 17 |
6455257 | 17 |
379721 | 379721 |
1 |
123456789 = 3 · 3 · 3607 · 3803;
123456789 | 3 |
41152263 | 3 |
13717421 | 3607 |
3803 | 3803 |
1 |
2. Выбираем одинаковые множители. В нашем случае это: 3, 3
3. Перемножаем эти множители и получаем: 3 · 3 = 9
Нахождение НОК 123456789 и 987654321
Наименьшее общее кратное (НОК) целых чисел 123456789 и 987654321 — это наименьшее натуральное число, которое делится на 123456789 и на 987654321 без остатка.
Как найти НОК 123456789 и 987654321:
- разложить 123456789 и 987654321 на простые множители;
- выбрать одну группу множителей;
- добавить к ним множители из второй группы, которые отсутствуют в выбранной;
- найти их произведение.
Отсюда:
1. Раскладываем 123456789 и 987654321 на простые множители:
123456789 = 3 · 3 · 3607 · 3803;
123456789 | 3 |
41152263 | 3 |
13717421 | 3607 |
3803 | 3803 |
1 |
987654321 = 3 · 3 · 17 · 17 · 379721;
987654321 | 3 |
329218107 | 3 |
109739369 | 17 |
6455257 | 17 |
379721 | 379721 |
1 |
2. Берем множители из первого разложения, добавляем к ним отсутствующие множители со второго разложения и вычисляем произведение.