Найти НОД и НОК чисел 121212 и 191919

Дано: два числа 121212 и 191919.

Найти: НОД и НОК этих чисел.

Нахождение НОД 121212 и 191919

Наибольший общий делитель (НОД) целых чисел 121212 и 191919 — это наибольшее из их общих делителей, т.е наибольшее число, на которое оба делятся без остатка.

Как найти НОД 121212 и 191919:

  1. разложить 121212 и 191919 на простые множители;
  2. выбрать одинаковые множители, входящие в оба разложения;
  3. найти их произведение.

Отсюда:

1. Раскладываем 121212 и 191919 на простые множители:

191919 = 3 · 7 · 13 · 19 · 37;

191919 3
63973 7
9139 13
703 19
37 37
1

121212 = 2 · 2 · 3 · 3 · 7 · 13 · 37;

121212 2
60606 2
30303 3
10101 3
3367 7
481 13
37 37
1

2. Выбираем одинаковые множители. В нашем случае это: 3, 7, 13, 37

3. Перемножаем эти множители и получаем: 3 · 7 · 13 · 37 = 10101

Ответ: НОД (121212; 191919) = 3 · 7 · 13 · 37 = 10101.

Нахождение НОК 121212 и 191919

Наименьшее общее кратное (НОК) целых чисел 121212 и 191919 — это наименьшее натуральное число, которое делится на 121212 и на 191919 без остатка.

Как найти НОК 121212 и 191919:

  1. разложить 121212 и 191919 на простые множители;
  2. выбрать одну группу множителей;
  3. добавить к ним множители из второй группы, которые отсутствуют в выбранной;
  4. найти их произведение.

Отсюда:

1. Раскладываем 121212 и 191919 на простые множители:

121212 = 2 · 2 · 3 · 3 · 7 · 13 · 37;

121212 2
60606 2
30303 3
10101 3
3367 7
481 13
37 37
1

191919 = 3 · 7 · 13 · 19 · 37;

191919 3
63973 7
9139 13
703 19
37 37
1

2. Берем множители из первого разложения, добавляем к ним отсутствующие множители со второго разложения и вычисляем произведение.

Ответ: НОК (121212; 191919) = 2 · 2 · 3 · 3 · 7 · 13 · 37 · 19 = 2303028

Калькулятор нахождения НОД и НОК

Введите 2 числа и получите подробное решение.

Смотрите также

Подписаться
Уведомить о
guest
0 комментариев
Межтекстовые Отзывы
Посмотреть все комментарии