Найти: НОД и НОК этих чисел.
Нахождение НОД 1095 и 738
Наибольший общий делитель (НОД) целых чисел 1095 и 738 — это наибольшее из их общих делителей, т.е наибольшее число, на которое оба делятся без остатка.
Как найти НОД 1095 и 738:
- разложить 1095 и 738 на простые множители;
- выбрать одинаковые множители, входящие в оба разложения;
- найти их произведение.
Отсюда:
1. Раскладываем 1095 и 738 на простые множители:
1095 = 3 · 5 · 73;
1095 | 3 |
365 | 5 |
73 | 73 |
1 |
738 = 2 · 3 · 3 · 41;
738 | 2 |
369 | 3 |
123 | 3 |
41 | 41 |
1 |
2. Выбираем одинаковые множители. В нашем случае это: 3
3. Перемножаем эти множители и получаем: 3 = 3
Нахождение НОК 1095 и 738
Наименьшее общее кратное (НОК) целых чисел 1095 и 738 — это наименьшее натуральное число, которое делится на 1095 и на 738 без остатка.
Как найти НОК 1095 и 738:
- разложить 1095 и 738 на простые множители;
- выбрать одну группу множителей;
- добавить к ним множители из второй группы, которые отсутствуют в выбранной;
- найти их произведение.
Отсюда:
1. Раскладываем 1095 и 738 на простые множители:
1095 = 3 · 5 · 73;
1095 | 3 |
365 | 5 |
73 | 73 |
1 |
738 = 2 · 3 · 3 · 41;
738 | 2 |
369 | 3 |
123 | 3 |
41 | 41 |
1 |
2. Берем множители из первого разложения, добавляем к ним отсутствующие множители со второго разложения и вычисляем произведение.