Найти: НОД и НОК этих чисел.
Нахождение НОД 108 и 1368
Наибольший общий делитель (НОД) целых чисел 108 и 1368 — это наибольшее из их общих делителей, т.е наибольшее число, на которое оба делятся без остатка.
Как найти НОД 108 и 1368:
- разложить 108 и 1368 на простые множители;
- выбрать одинаковые множители, входящие в оба разложения;
- найти их произведение.
Отсюда:
1. Раскладываем 108 и 1368 на простые множители:
1368 = 2 · 2 · 2 · 3 · 3 · 19;
1368 | 2 |
684 | 2 |
342 | 2 |
171 | 3 |
57 | 3 |
19 | 19 |
1 |
108 = 2 · 2 · 3 · 3 · 3;
108 | 2 |
54 | 2 |
27 | 3 |
9 | 3 |
3 | 3 |
1 |
2. Выбираем одинаковые множители. В нашем случае это: 2, 2, 3, 3
3. Перемножаем эти множители и получаем: 2 · 2 · 3 · 3 = 36
Нахождение НОК 108 и 1368
Наименьшее общее кратное (НОК) целых чисел 108 и 1368 — это наименьшее натуральное число, которое делится на 108 и на 1368 без остатка.
Как найти НОК 108 и 1368:
- разложить 108 и 1368 на простые множители;
- выбрать одну группу множителей;
- добавить к ним множители из второй группы, которые отсутствуют в выбранной;
- найти их произведение.
Отсюда:
1. Раскладываем 108 и 1368 на простые множители:
108 = 2 · 2 · 3 · 3 · 3;
108 | 2 |
54 | 2 |
27 | 3 |
9 | 3 |
3 | 3 |
1 |
1368 = 2 · 2 · 2 · 3 · 3 · 19;
1368 | 2 |
684 | 2 |
342 | 2 |
171 | 3 |
57 | 3 |
19 | 19 |
1 |
2. Берем множители из первого разложения, добавляем к ним отсутствующие множители со второго разложения и вычисляем произведение.