Найти НОД и НОК чисел 1050 и 2250

Дано: два числа 1050 и 2250.

Найти: НОД и НОК этих чисел.

Нахождение НОД 1050 и 2250

Наибольший общий делитель (НОД) целых чисел 1050 и 2250 — это наибольшее из их общих делителей, т.е наибольшее число, на которое оба делятся без остатка.

Как найти НОД 1050 и 2250:

  1. разложить 1050 и 2250 на простые множители;
  2. выбрать одинаковые множители, входящие в оба разложения;
  3. найти их произведение.

Отсюда:

1. Раскладываем 1050 и 2250 на простые множители:

2250 = 2 · 3 · 3 · 5 · 5 · 5;

2250 2
1125 3
375 3
125 5
25 5
5 5
1

1050 = 2 · 3 · 5 · 5 · 7;

1050 2
525 3
175 5
35 5
7 7
1

2. Выбираем одинаковые множители. В нашем случае это: 2, 3, 5, 5

3. Перемножаем эти множители и получаем: 2 · 3 · 5 · 5 = 150

Ответ: НОД (1050; 2250) = 2 · 3 · 5 · 5 = 150.

Нахождение НОК 1050 и 2250

Наименьшее общее кратное (НОК) целых чисел 1050 и 2250 — это наименьшее натуральное число, которое делится на 1050 и на 2250 без остатка.

Как найти НОК 1050 и 2250:

  1. разложить 1050 и 2250 на простые множители;
  2. выбрать одну группу множителей;
  3. добавить к ним множители из второй группы, которые отсутствуют в выбранной;
  4. найти их произведение.

Отсюда:

1. Раскладываем 1050 и 2250 на простые множители:

1050 = 2 · 3 · 5 · 5 · 7;

1050 2
525 3
175 5
35 5
7 7
1

2250 = 2 · 3 · 3 · 5 · 5 · 5;

2250 2
1125 3
375 3
125 5
25 5
5 5
1

2. Берем множители из первого разложения, добавляем к ним отсутствующие множители со второго разложения и вычисляем произведение.

Ответ: НОК (1050; 2250) = 2 · 3 · 3 · 5 · 5 · 5 · 7 = 15750

Калькулятор нахождения НОД и НОК

Введите 2 числа и получите подробное решение.

Смотрите также

Подписаться
Уведомить о
guest
0 комментариев
Межтекстовые Отзывы
Посмотреть все комментарии