Найти: НОД и НОК этих чисел.
Нахождение НОД 100000 и 345
Наибольший общий делитель (НОД) целых чисел 100000 и 345 — это наибольшее из их общих делителей, т.е наибольшее число, на которое оба делятся без остатка.
Как найти НОД 100000 и 345:
- разложить 100000 и 345 на простые множители;
- выбрать одинаковые множители, входящие в оба разложения;
- найти их произведение.
Отсюда:
1. Раскладываем 100000 и 345 на простые множители:
100000 = 2 · 2 · 2 · 2 · 2 · 5 · 5 · 5 · 5 · 5;
100000 | 2 |
50000 | 2 |
25000 | 2 |
12500 | 2 |
6250 | 2 |
3125 | 5 |
625 | 5 |
125 | 5 |
25 | 5 |
5 | 5 |
1 |
345 = 3 · 5 · 23;
345 | 3 |
115 | 5 |
23 | 23 |
1 |
2. Выбираем одинаковые множители. В нашем случае это: 5
3. Перемножаем эти множители и получаем: 5 = 5
Нахождение НОК 100000 и 345
Наименьшее общее кратное (НОК) целых чисел 100000 и 345 — это наименьшее натуральное число, которое делится на 100000 и на 345 без остатка.
Как найти НОК 100000 и 345:
- разложить 100000 и 345 на простые множители;
- выбрать одну группу множителей;
- добавить к ним множители из второй группы, которые отсутствуют в выбранной;
- найти их произведение.
Отсюда:
1. Раскладываем 100000 и 345 на простые множители:
100000 = 2 · 2 · 2 · 2 · 2 · 5 · 5 · 5 · 5 · 5;
100000 | 2 |
50000 | 2 |
25000 | 2 |
12500 | 2 |
6250 | 2 |
3125 | 5 |
625 | 5 |
125 | 5 |
25 | 5 |
5 | 5 |
1 |
345 = 3 · 5 · 23;
345 | 3 |
115 | 5 |
23 | 23 |
1 |
2. Берем множители из первого разложения, добавляем к ним отсутствующие множители со второго разложения и вычисляем произведение.