Найти: НОД и НОК этих чисел.
Нахождение НОД 100 и 675
Наибольший общий делитель (НОД) целых чисел 100 и 675 — это наибольшее из их общих делителей, т.е наибольшее число, на которое оба делятся без остатка.
Как найти НОД 100 и 675:
- разложить 100 и 675 на простые множители;
- выбрать одинаковые множители, входящие в оба разложения;
- найти их произведение.
Отсюда:
1. Раскладываем 100 и 675 на простые множители:
675 = 3 · 3 · 3 · 5 · 5;
675 | 3 |
225 | 3 |
75 | 3 |
25 | 5 |
5 | 5 |
1 |
100 = 2 · 2 · 5 · 5;
100 | 2 |
50 | 2 |
25 | 5 |
5 | 5 |
1 |
2. Выбираем одинаковые множители. В нашем случае это: 5, 5
3. Перемножаем эти множители и получаем: 5 · 5 = 25
Нахождение НОК 100 и 675
Наименьшее общее кратное (НОК) целых чисел 100 и 675 — это наименьшее натуральное число, которое делится на 100 и на 675 без остатка.
Как найти НОК 100 и 675:
- разложить 100 и 675 на простые множители;
- выбрать одну группу множителей;
- добавить к ним множители из второй группы, которые отсутствуют в выбранной;
- найти их произведение.
Отсюда:
1. Раскладываем 100 и 675 на простые множители:
100 = 2 · 2 · 5 · 5;
100 | 2 |
50 | 2 |
25 | 5 |
5 | 5 |
1 |
675 = 3 · 3 · 3 · 5 · 5;
675 | 3 |
225 | 3 |
75 | 3 |
25 | 5 |
5 | 5 |
1 |
2. Берем множители из первого разложения, добавляем к ним отсутствующие множители со второго разложения и вычисляем произведение.