Найти: НОД и НОК этих чисел.
Нахождение НОД 1134 и 162
Наибольший общий делитель (НОД) целых чисел 1134 и 162 — это наибольшее из их общих делителей, т.е наибольшее число, на которое оба делятся без остатка.
Как найти НОД 1134 и 162:
- разложить 1134 и 162 на простые множители;
- выбрать одинаковые множители, входящие в оба разложения;
- найти их произведение.
Отсюда:
1. Раскладываем 1134 и 162 на простые множители:
1134 = 2 · 3 · 3 · 3 · 3 · 7;
1134 | 2 |
567 | 3 |
189 | 3 |
63 | 3 |
21 | 3 |
7 | 7 |
1 |
162 = 2 · 3 · 3 · 3 · 3;
162 | 2 |
81 | 3 |
27 | 3 |
9 | 3 |
3 | 3 |
1 |
2. Выбираем одинаковые множители. В нашем случае это: 2, 3, 3, 3, 3
3. Перемножаем эти множители и получаем: 2 · 3 · 3 · 3 · 3 = 162
Нахождение НОК 1134 и 162
Наименьшее общее кратное (НОК) целых чисел 1134 и 162 — это наименьшее натуральное число, которое делится на 1134 и на 162 без остатка.
Как найти НОК 1134 и 162:
- разложить 1134 и 162 на простые множители;
- выбрать одну группу множителей;
- добавить к ним множители из второй группы, которые отсутствуют в выбранной;
- найти их произведение.
Отсюда:
1. Раскладываем 1134 и 162 на простые множители:
1134 = 2 · 3 · 3 · 3 · 3 · 7;
1134 | 2 |
567 | 3 |
189 | 3 |
63 | 3 |
21 | 3 |
7 | 7 |
1 |
162 = 2 · 3 · 3 · 3 · 3;
162 | 2 |
81 | 3 |
27 | 3 |
9 | 3 |
3 | 3 |
1 |
2. Берем множители из первого разложения, добавляем к ним отсутствующие множители со второго разложения и вычисляем произведение.